Toluene biodegradation in a catalyst membrane reactor linked with manganese oxide catalysis. Toluene might degrade more quickly in a membrane biofilm reactor when manganese oxide is added. XRD, Raman, XPS, and FT-IR techniques were used to describe manganese oxide catalysts. The existence of Mn defects, adsorbed oxygen species, and the oxygen vacancy, which strongly catalysed toluene on the Mn oxides covered membranes, was confirmed by the Raman and XPS spectra. The predominant microorganisms involved in the breakdown of toluene were Pseudomonas, Hydrogenophaga, Flavobacterium, Bacillus, Clostridium, and Prosthecobacter. Toluene could be broken down into intermediate products by the catalytic action of Mn oxides, and once these products reached the biological phase, they were finally metabolised to CO2 and H2O. a catalyst membrane reactor with a manganese oxide catalytic membrane connected to the biodegradation of toluene (CMBfR). CMBfR's effectiveness for removing xylene was up to 91% throughout the course of 200 days. Toluene breakdown may be accelerated by manganese oxide added to a membrane biofilm reactor. By using XRD, Raman, XPS, and FT-IR, manganese oxide catalysts were studied. Raman and XPS spectra confirmed the presence of Mn defects, adsorbed oxygen species, and the oxygen vacancy that strongly catalysed toluene on the Mn oxides covered membranes. An technique to waste management and energy recovery that shows promise is the catalytic conversion of used rubber and plastic into aromatic hydrocarbons. The most efficient substrate was BR, with a yield improvement of 2.4 over Zr/HY. A variety of waste polymers, including waste tyres (WT), polyethylene (PE), polycarbonate (PC), and BR, were subjected to catalytic pyrolysis to investigate the effects of polymer type on aromatic hydrocarbons generation.
Title : Human impact on natural environment and its implications
Dai Yeun Jeong, Asia Climate Change Education Center, Korea, Republic of
Title : Solar heterogeneous photocatalysis and photochemistry for urban wastewater regeneration and reuse
Isabel Oller Alberola, Plataforma Solar de Almería, Spain
Title : Perspective of ruthenium complex catalyst system for selective oxidation of methane
Ram Sambhar Shukla, CSIR-Central Salt and Marine Chemicals Research Institute (CSMCRI), India
Title : Personalized and Precision Medicine PPM as a unique healthcare model through biodesign inspired and biotech driven translational applications and upgraded business marketing to secure the human healthcare and biosafety
Sergey Suchkov, R&D Director of the National Center for Human Photosynthesis, Mexico
Title : Effect of bed material on syngas quality: Comparison of biomass gasification with different bed materials
Enrico Paris, CREA-IT & DIAEE, Italy
Title : 30,000 nano implants in humans with no infections, no loosening, and no failures
Thomas J Webster, Interstellar Therapeutics, United States
Title : Thermomechanical processes and transformations governing reversibility in shape memory alloys
Osman Adiguzel, Firat University, Turkey
Title : Design of nanocomposite materials for active components of structured catalysts for biofuels transformation into syngas, catalytic layers of membrane reactors with oxygen/hydrogen separation and anodes of solid oxide fuels cells operating in the internal reforming mode
Vladislav Sadykov, Boreskov Institute of Catalysis, Russian Federation
Title : Multi-component heterostructures for scalable green H2 production using overall catalysis
Tokeer Ahmad, Jamia Millia Islamia, India
Title : Research progress and future development trend of plasma technology in the field of mercury removal from flue gas
Ying Li, School of Energy and Power Engineering Jiangsu University, China