In-situ and operando catalysis have emerged as transformative techniques for the study of catalytic processes, offering real-time insights into catalyst performance under reaction conditions. In-situ catalysis involves the direct observation of catalysts in action, providing researchers with a detailed understanding of how catalysts behave within the reaction medium, including their structural and electronic changes during catalysis. This is particularly important in the case of complex catalytic systems, where traditional methods may fail to capture the dynamic changes occurring during the reaction. Operando catalysis, which involves monitoring both the catalyst and the reaction simultaneously, takes this a step further by offering a holistic view of the catalytic process.
Title : Human impact on natural environment and its implications
Dai Yeun Jeong, Asia Climate Change Education Center, Korea, Republic of
Title : Solar heterogeneous photocatalysis and photochemistry for urban wastewater regeneration and reuse
Isabel Oller Alberola, Plataforma Solar de Almería, Spain
Title : Perspective of ruthenium complex catalyst system for selective oxidation of methane
Ram Sambhar Shukla, CSIR-Central Salt and Marine Chemicals Research Institute (CSMCRI), India
Title : Personalized and Precision Medicine PPM as a unique healthcare model through biodesign inspired and biotech driven translational applications and upgraded business marketing to secure the human healthcare and biosafety
Sergey Suchkov, R&D Director of the National Center for Human Photosynthesis, Mexico
Title : Effect of bed material on syngas quality: Comparison of biomass gasification with different bed materials
Enrico Paris, CREA-IT & DIAEE, Italy
Title : 30,000 nano implants in humans with no infections, no loosening, and no failures
Thomas J Webster, Interstellar Therapeutics, United States
Title : Thermomechanical processes and transformations governing reversibility in shape memory alloys
Osman Adiguzel, Firat University, Turkey
Title : Design of nanocomposite materials for active components of structured catalysts for biofuels transformation into syngas, catalytic layers of membrane reactors with oxygen/hydrogen separation and anodes of solid oxide fuels cells operating in the internal reforming mode
Vladislav Sadykov, Boreskov Institute of Catalysis, Russian Federation
Title : Multi-component heterostructures for scalable green H2 production using overall catalysis
Tokeer Ahmad, Jamia Millia Islamia, India
Title : Research progress and future development trend of plasma technology in the field of mercury removal from flue gas
Ying Li, School of Energy and Power Engineering Jiangsu University, China