Homogeneous catalysis is a central concept in modern chemical processes, providing a mechanism for reactions to occur under controlled conditions, leading to high yields and minimal byproducts. The catalyst, being in the same phase as the reactants, interacts intimately with the molecules involved in the reaction, promoting faster and more efficient transformations. This highly efficient system has been applied extensively in organic synthesis, particularly for reactions such as hydroformylation, polymerization, and cross-coupling. The precision afforded by homogeneous catalysis enables chemists to design highly selective reactions, reducing the need for excess reagents and thus minimizing waste. One of the primary challenges in homogeneous catalysis is the issue of catalyst recovery and reuse. Over the years, researchers have made significant progress in overcoming this hurdle by developing catalytic systems that can be regenerated or incorporated into recyclable frameworks. Another exciting direction is the integration of homogeneous catalysis with renewable feedstocks, such as biomass, to produce chemicals and fuels sustainably. As the demand for green chemistry intensifies, the role of homogeneous catalysis in enabling efficient, low-energy processes continues to grow. This area of research is also exploring the potential for coupling homogeneous catalysis with other catalytic systems, such as photocatalysis or electrocatalysis, to create hybrid systems that can address the challenges of energy storage and environmental cleanup. Homogeneous catalysis is thus poised to remain a cornerstone of chemical innovation, driving progress toward more sustainable industrial practices and chemical processes.
Title : Application of vanadium and tantalum single-site zeolite catalysts in catalysis
Stanislaw Dzwigaj, Sorbonne University, France
Title : 30,000 nano implants in humans with no infections, no loosening, and no failures
Thomas J Webster, Interstellar Therapeutics, United States
Title : Human impact on natural environment and its implications
Dai Yeun Jeong, Asia Climate Change Education Center, Korea, Republic of
Title : Design of nanocomposite materials for active components of structured catalysts for biofuels transformation into syngas, catalytic layers of membrane reactors with oxygen/hydrogen separation and anodes of solid oxide fuels cells operating in the internal reforming mode
Vladislav Sadykov, Boreskov Institute of Catalysis, Russian Federation
Title : Personalized and precision medicine (PPM) as a unique healthcare model through biodesign-inspired & biotech-driven translational applications and upgraded business marketing to secure the human healthcare and biosafety
Sergey Suchkov, R&D Director of the National Center for Human Photosynthesis, Mexico
Title : Solar heterogeneous photocatalysis and photochemistry for urban wastewater regeneration and reuse
Sabel Oller Alberola, Plataforma Solar de AlmerÃa, Spain
Title : Valorizing lignocellulose to Ethylene Glycol: catalysis, catalyst deactivation and conceptual process design
Jean Paul Lange, University of Twente, Netherlands
Title : Effect of bed material on syngas quality: comparison of biomass gasification with different bed materials
Enrico Paris, CREA-IT & DIAEE, Italy
Title : Antibody-proteases as translational biomarkers, targets and potential tools of the next step generation as applicable for design-driven personalized and precision medical practice
Sergey Suchkov, R&D Director of the National Center for Human Photosynthesis, Mexico
Title : Role of alkali earth metals in tailoring Ni/CeO2 system for efficient ammonia decomposition
Majed Alamoudi, King Abdulaziz University, Saudi Arabia