The integration of thermodynamics and transport phenomena is crucial for optimizing chemical processes, especially in catalysis. Thermodynamics focuses on energy conservation, equilibrium, and reaction direction, helping engineers assess reaction feasibility and control conditions to maximize yield and minimize energy use. Transport phenomena, on the other hand, examines mass, energy, and momentum movement through fluids, critical for understanding reactant-catalyst interactions and product removal. In catalytic reactions, mass transfer rates can limit performance, especially with large molecules or in packed bed or slurry catalysts. Heat transfer is also key in exothermic reactions, where poor temperature control can lead to hot spots or catalyst degradation. By combining thermodynamics and transport insights, engineers can develop models to optimize reactor designs, control temperature gradients, and improve reaction efficiency. These principles are essential for designing sustainable processes that minimize energy consumption and environmental impact in industries like chemicals, petrochemicals, and environmental sectors.
Title : Application of vanadium and tantalum single-site zeolite catalysts in catalysis
Stanislaw Dzwigaj, Sorbonne University, France
Title : 30,000 nano implants in humans with no infections, no loosening, and no failures
Thomas J Webster, Interstellar Therapeutics, United States
Title : Human impact on natural environment and its implications
Dai Yeun Jeong, Asia Climate Change Education Center, Korea, Republic of
Title : Design of nanocomposite materials for active components of structured catalysts for biofuels transformation into syngas, catalytic layers of membrane reactors with oxygen/hydrogen separation and anodes of solid oxide fuels cells operating in the internal reforming mode
Vladislav Sadykov, Boreskov Institute of Catalysis, Russian Federation
Title : Personalized and precision medicine (PPM) as a unique healthcare model through biodesign-inspired & biotech-driven translational applications and upgraded business marketing to secure the human healthcare and biosafety
Sergey Suchkov, R&D Director of the National Center for Human Photosynthesis, Mexico
Title : Solar heterogeneous photocatalysis and photochemistry for urban wastewater regeneration and reuse
Sabel Oller Alberola, Plataforma Solar de AlmerÃa, Spain
Title : Valorizing lignocellulose to Ethylene Glycol: catalysis, catalyst deactivation and conceptual process design
Jean Paul Lange, University of Twente, Netherlands
Title : Effect of bed material on syngas quality: comparison of biomass gasification with different bed materials
Enrico Paris, CREA-IT & DIAEE, Italy
Title : Antibody-proteases as translational biomarkers, targets and potential tools of the next step generation as applicable for design-driven personalized and precision medical practice
Sergey Suchkov, R&D Director of the National Center for Human Photosynthesis, Mexico
Title : Role of alkali earth metals in tailoring Ni/CeO2 system for efficient ammonia decomposition
Majed Alamoudi, King Abdulaziz University, Saudi Arabia