By carefully adjusting the coordination environment and quantity of low-coordination atoms, nanomaterials' electrocatalytic performance may be improved. Through the control of electron transport characteristics, atomic arrangement, and molecule structure in a confined area, confinement engineering is the most effective method for the exact chemical production of electrocatalysts. It adjusts the generation of active centres by changing the coordination conditions, but it also controls the physicochemical characteristics of electrocatalysts. Therefore, in electrocatalysis, the nucleation, transportation, and stabilisation of intermediate species are improved, which enhances the performance in terms of activity, stability, and selectivity. In electrochemical processes, an electrocatalyst functions as a catalyst. Materials that function as catalysts alter and speed up chemical processes without being consumed in the process.
Title : Application of vanadium and tantalum single-site zeolite catalysts in catalysis
Stanislaw Dzwigaj, Sorbonne University, France
Title : 30,000 nano implants in humans with no infections, no loosening, and no failures
Thomas J Webster, Interstellar Therapeutics, United States
Title : Solar heterogeneous photocatalysis and photochemistry for urban wastewater regeneration and reuse
Isabel Oller Alberola, Plataforma Solar de Almería, Spain
Title : Personalized and Precision Medicine (PPM) as a unique healthcare model through biodesign-inspired & biotech-driven translational applications and upgraded business marketing to secure the human healthcare and biosafety
Sergey Suchkov, R&D Director of the National Center for Human Photosynthesis, Mexico
Title : Human impact on natural environment and its implications
Dai Yeun Jeong, Asia Climate Change Education Center, Korea, Republic of
Title : Effect of bed material on syngas quality: Comparison of biomass gasification with different bed materials
Enrico Paris, CREA-IT & DIAEE, Italy
Title : Valorizing lignocellulose to ethylene glycol: Catalysis, catalyst deactivation and conceptual process design
Jean Paul Lange, University of Twente, Netherlands
Title : Design of nanocomposite materials for active components of structured catalysts for biofuels transformation into syngas, catalytic layers of membrane reactors with oxygen/hydrogen separation and anodes of solid oxide fuels cells operating in the internal reforming mode
Vladislav Sadykov, Boreskov Institute of Catalysis, Russian Federation
Title : Cleaner syngas from biomass gasification: Is K-Feldspar the key?
Beatrice Vincenti, Sapienza University of Rome, Italy
Title : Sustainable catalyst development: metal modified lignin-plastic composites for hydrogen production
Tahreem Saleem, University of Milano-Bicocca Italy, Italy