Understanding the rates of chemical reactions is the focus of the physical chemistry field of chemical kinetics, also referred to as reaction kinetics. Contrast that with chemical thermodynamics, which focuses on the direction in which a reaction takes place but says nothing about the pace of the process. Chemical kinetics comprises studies of how experimental circumstances affect a chemical reaction's rate and reveal details about the reaction's mechanism and transition phases, as well as the creation of mathematical models that can also characterise a chemical reaction's features. Chemical reaction is modelled mathematically. Chemical engineers and chemists may use kinetics to better comprehend and characterise chemical processes including the chemistry of biological systems, the proliferation of microorganisms, and the destruction of stratospheric ozone. The design or modification of chemical reactors may also make use of these models to increase product yield, more effectively segregate products, and get rid of by-products that are bad for the environment. Kinetic models can be used, for instance, to determine the temperature and pressure that will result in the best yield of heavy hydrocarbons into gasoline while conducting catalytic cracking of heavy hydrocarbons into gasoline and light gas.
Title : Distant binuclear vanadium V(II) cationic sites in zeolites and their reactivity
Jiri Dedecek, J Heyrovsky Institute of Physical Chemistry , Czech Republic
Title : Advanced nanostructures for carbon neutrality and sustainable H₂ energy
Tokeer Ahmad, Jamia Millia Islamia, India
Title : Personalized and Precision Medicine (PPM) as a unique healthcare model via bi-odesign, bio- and chemical engineering, translational applications, and upgraded business modeling to secure the human healthcare and biosafety
Sergey Suchkov, N.D. Zelinskii Institute for Organic Chemistry of the Russian Academy of Sciences, Russian Federation
Title : Antibody-proteases as a generation of unique biomarkers, biocatalysts, potential targets and translational tools towards nanodesign-driven biochemical engineering and precision medical practice
Sergey Suchkov, N.D. Zelinskii Institute for Organic Chemistry of the Russian Academy of Sciences, Russian Federation
Title : Dimethyl ether synthesis from syngas over Cu-Zn/Al2O3 catalysts prepared using the Sol-Gel method
Uday Som, Research and Development Engineer, Japan
Title : Influence of various catalysts on H₂ enhancement and CO2 capture during syngas upgrading
Enrico Paris, CREA-IT & DIAEE, Italy
Title : Photoaligned azodye nanolayers : New nanotechnology for liquid crystal devices
Vladimir G Chigrinov, Hong Kong University of Science and Technology, Russian Federation
Title : Application of vanadium, tantalum and chromium single-site zeolite catalysts in catalysis
Stanislaw Dzwigaj, Sorbonne University, France
Title : Oxidation of methane to methanol over pairs of transition metal ions stabilized in the zeolite matrices
Jiri Dedecek, J Heyrovsky Institute of Physical Chemistry , Czech Republic
Title : The Concept and Implications of Low Carbon Green Growth
Dai Yeun Jeong, Asia Climate Change Education Center, Korea, Republic of