Title : Computational prediction of an important protein’s structure
Abstract:
ß-lactam enzyme antibiotic is one of the most effective chemotherapy medicine in treating bacteria infection. Inhibitor of metal 2-lactam enzyme is an important topic in clinical medical science during the historic development of antibiotics in the past sixty years since the discovery of penicillin. The most common resistance mechanism is to hydrolysis the enzyme of these antibiotics, known as ß-lactam enzyme. Metal ß-lactam enzyme has a very rare wide substrate surface, which can prohibit the movement of bicyclic ß-lactam antibiotics. The research focus in medical science is concentrated on ß-lactam enzyme’s structure and inhibitor design.
In my own work, an important protein system, named as metal ß-lactam enzyme of arc-shaped stem fungus, is investigated theoretically. The three-dimensional structure of metal ß-lactam enzyme of arc-shaped stem fungus is obtained by means of homology modeling and molecular dynamics simulation. Additionally, active sites have been predicted according to the catalysis mechanism of metal ß-lactam enzyme of arc-shaped stem fungus. Finally, our computed results are compared with previous reports of relevance. The differences have been analyzed and discussed.