Title : Core state parameter monitoring of high-reliability smart energy storage systems
Abstract:
As an important component of the smart grid energy storage system, high-precision state of health estimation of lithium-ion batteries is crucial for ensuring the power quality and supply capacity of the smart grid. To achieve this goal, an improved integrated algorithm based on multiple layer kernel extreme learning machine and genetic particle swarm optimization algorithm is proposed to estimate the SOH of Lithium-ion batteries. Kernel function parameters are used to simulate the update of particle position and speed, and genetic algorithm is introduced to select, cross and mutate particles. The improved particle swarm optimization is used to optimize the extreme value to improve prediction accuracy and model stability. The cycle data of different specifications of LIB units are processed to construct the traditional high-dimensional health feature dataset and the low-dimensional fusion feature dataset, and each version of ML-ELM network is trained and tested separately. The numerical analysis of the prediction results shows that the root mean square error of the comprehensive algorithm for SOH estimation is controlled within 0.66%. The results of the multi-indicator comparison show that the proposed algorithm can track the true value stably and accurately with satisfactory high accuracy and strong robustness, providing guarantees for the efficient and stable operation of the smart grid.