HYBRID EVENT: You can participate in person at Rome, Italy or Virtually from your home or work.
Enrico Paris, Speaker at Chemistry
Title : Sorption Enhanced Water Gas Shift (SEWGS) process during biomass gasification


The research activity carried out responds to the need to find sustainable alternative energy sources. Gasification is a thermochemical energy conversion technique of biomass that allows to obtain a syngas, which can be stored or directly used as a fuel. In this work a prototypal fluidized bed gasification (FBG) plant (1.5 kW) was used to thermochemically convert a waste biomass (hazelnut shells) in an H2-rich syngas thanks to the Sorption Enhanced Water Gas Shift (SEWGS) reaction. SEWGS is an exothermic reversible chemical reaction that combines the Water Gas Shift reaction for the production of H2 with an adsorption reaction of unwanted products (CO2). The use of an appropriate catalyst (e.g. nickel, iron and chromium oxides, etc.) and water vapor in the syngas allows the water shift (WGS) reaction to take place. The reaction typically occurs at temperatures between 200-400, and the use of an adsorbent material allows to subtract CO2, pushing the equilibrium of the reaction towards the products and increasing the yield of H2, in accordance with the principle of Le Chatelier. In particular, using a post reactor, at relatively low temperatures (200 system C) and an adsorbent/catalyst material, a syngas with 13.97% H2 was passed to a syngas with 22.93% H2.

Audience Take Away:
The proposed work is mainly informative and shows how it can also produce a "small" gasification plant that allows the disposal of residual biomass in small farms (plant consumption of about 1.5 kg/h). It also shows how the proposed gasification system can be easily interfaced with a post-reactor that optimizes the production of H2. The proposed H2 optimization and production work is particularly useful for those involved in:

• Disposal of biomass
• Altrenative energy
• Circular Economy
• Biohydrogen


Dr. Enrico Paris studied Analytical Chemistry at La Sapienza University of Rome (Italy) and graduated as MS in 2017, with the thesis "Development of a method for the analysis of micro-pollutants in air using adsorption traps based on activated carbon fiber and TD GC / MS analysis." In 2018 he obtains a scholarship to CREA-IT of Monterotondo and is a member since 2020 of the Italian Association of Chemists and Physicists. In 2022 he received his PhD degree cum laude in "Energy and Environment Engineering " at La Sapienza University of Rome. From 2022 he is Technologist at the CREA-IT in the LASER-B (Laboratory for Experimental Activities on Renewable Energy from Biomass). He is a reviwer and editor of numerous international scientific journals and has been a member of the scientific committee of several international conferences. He has 46 publications on Scopus and H-index equal to 7.