Title : Base modified Bi2WO6: A facile route to improved photocatalytic activity under visible light
Abstract:
In this study, a facile approach was successfully employed to improve the photocatalytic activity of Bi2WO6. The pristine Bi2WO6 (p-Bi2WO6) nanoplates were prepared through a conventional hydrothermal method and then were subjected to sodium hydroxide aqueous solutions with concentrations ranging from 0.5 M to 10 M. Under visible light irradiation, the photocatalytic activities of base-modified Bi2WO6 (b-Bi2WO6) were significantly enhanced when compared to that of the p-Bi2WO6. However, as the concentration of base solution continues to increase, the performance of b-Bi2WO6 deteriorated. The b-Bi2WO6 nanoplates were characterized by various techniques including XRD, TEM, porosimetry analysis, UV–vis spectrometry, and XPS. The results indicated that the surface of b-Bi2WO6 was etched by alkaline solutions, which improved the surface area and produced active sites on the surface. The b-Bi2WO6 nanoplates were proved to be highly effective in photocatalytic degradation of emerging contaminants including ibuprofen (IBP) and microcystin-LR (MC-LR). The degradation byproducts and pathways of IBP were also investigated.
This study is beneficial to further understand the chemistry and properties of Bi2WO6 materials. The facile modification proposed here provides a novel strategy for improving the photocatalytic activity of Bi2WO6 materials, which could also be applied to other types of photocatalysts. In addition, the efficient degradation of IBP and MC-LR under visible light demonstrates the great potential of environmental remediation using sustainable solar energy.